If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-4x-50=0
a = 3; b = -4; c = -50;
Δ = b2-4ac
Δ = -42-4·3·(-50)
Δ = 616
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{616}=\sqrt{4*154}=\sqrt{4}*\sqrt{154}=2\sqrt{154}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{154}}{2*3}=\frac{4-2\sqrt{154}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{154}}{2*3}=\frac{4+2\sqrt{154}}{6} $
| 9-5x=4+6x | | 5(x+4)=8x+1 | | 3(x-5)=82 | | (9-5t)/3=-2 | | 10^t-5.3=7.2-10^t | | 69+a(10)=40 | | 20(4-a)=2a+10 | | 32+9=5y | | 10(10-b)=3/4 | | 2x^2+(3-x)^2=81 | | m/8-14=70 | | 2(a+10)=60 | | 12^2=x(x+2+x) | | 6a+2a=90° | | x=22x+5= | | 6^2=2(2+x+6) | | x(x-2)=3x-4 | | 0=90-9x-x^2 | | 15-4x=7,x=2,-2,0 | | 6(x‐9)=12 | | x+30°+5x=180 | | -15=-45+x | | C-2=c-12 | | 100x70=+x | | 15w-31=7w+64 | | 7d+23=5d+67 | | 13y+17=7y+47 | | 9h/5=27 | | 90=4g−–22 | | 14=3x+2x | | 12y-9=39 | | 5(m-6)=95 |